Bayesian Methods

Bayesian Methods
Author: Jeff Gill
Publsiher: CRC Press
Total Pages: 724
Release: 2014-12-11
Genre: Mathematics
ISBN: 9781439862490

Download Bayesian Methods Book in PDF, Epub and Kindle

An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social Scientists Now that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of the procedures and less on justifying procedures. The expanded examples reflect this updated approach. New to the Third Edition A chapter on Bayesian decision theory, covering Bayesian and frequentist decision theory as well as the connection of empirical Bayes with James–Stein estimation A chapter on the practical implementation of MCMC methods using the BUGS software Greatly expanded chapter on hierarchical models that shows how this area is well suited to the Bayesian paradigm Many new applications from a variety of social science disciplines Double the number of exercises, with 20 now in each chapter Updated BaM package in R, including new datasets, code, and procedures for calling BUGS packages from R This bestselling, highly praised text continues to be suitable for a range of courses, including an introductory course or a computing-centered course. It shows students in the social and behavioral sciences how to use Bayesian methods in practice, preparing them for sophisticated, real-world work in the field.

Bayesian Methods

Bayesian Methods
Author: Jeff Gill
Publsiher: Chapman and Hall/CRC
Total Pages: 724
Release: 2014-12-17
Genre: Mathematics
ISBN: 1439862486

Download Bayesian Methods Book in PDF, Epub and Kindle

An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social Scientists Now that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of the procedures and less on justifying procedures. The expanded examples reflect this updated approach. New to the Third Edition A chapter on Bayesian decision theory, covering Bayesian and frequentist decision theory as well as the connection of empirical Bayes with James–Stein estimation A chapter on the practical implementation of MCMC methods using the BUGS software Greatly expanded chapter on hierarchical models that shows how this area is well suited to the Bayesian paradigm Many new applications from a variety of social science disciplines Double the number of exercises, with 20 now in each chapter Updated BaM package in R, including new datasets, code, and procedures for calling BUGS packages from R This bestselling, highly praised text continues to be suitable for a range of courses, including an introductory course or a computing-centered course. It shows students in the social and behavioral sciences how to use Bayesian methods in practice, preparing them for sophisticated, real-world work in the field.

The Oxford Handbook of Quantitative Methods Volume 1 Foundations

The Oxford Handbook of Quantitative Methods  Volume 1  Foundations
Author: Todd D. Little
Publsiher: Oxford University Press
Total Pages: 506
Release: 2013-01-15
Genre: Psychology
ISBN: 9780199934881

Download The Oxford Handbook of Quantitative Methods Volume 1 Foundations Book in PDF, Epub and Kindle

Research today demands the application of sophisticated and powerful research tools. Fulfilling this need, The Oxford Handbook of Quantitative Methods is the complete tool box to deliver the most valid and generalizable answers to todays complex research questions. It is a one-stop source for learning and reviewing current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences. Comprising two volumes, this handbook covers a wealth of topics related to quantitative research methods. It begins with essential philosophical and ethical issues related to science and quantitative research. It then addresses core measurement topics before delving into the design of studies. Principal issues related to modern estimation and mathematical modeling are also detailed. Topics in the handbook then segway into the realm of statistical inference and modeling with chapters dedicated to classical approaches as well as modern latent variable approaches. Numerous chapters associated with longitudinal data and more specialized techniques round out this broad selection of topics. Comprehensive, authoritative, and user-friendly, this two-volume set will be an indispensable resource for serious researchers across the social, behavioral, and educational sciences.

The Oxford Handbook of Quantitative Methods in Psychology

The Oxford Handbook of Quantitative Methods in Psychology
Author: Todd D. Little
Publsiher: Oxford University Press, USA
Total Pages: 515
Release: 2014
Genre: Psychology
ISBN: 9780199370153

Download The Oxford Handbook of Quantitative Methods in Psychology Book in PDF, Epub and Kindle

This two-volume handbook on current best-practices in quantitative methods as practiced in the social, behavioral, and educational sciences covers philosophical and ethical issues, theory construction, model building and types of models, survey and experiment design, measurement issues, observational methods, statistical methods, types of analysis, types of data, and common research fallacies.

Understanding Computational Bayesian Statistics

Understanding Computational Bayesian Statistics
Author: William M. Bolstad
Publsiher: John Wiley & Sons
Total Pages: 336
Release: 2011-09-20
Genre: Mathematics
ISBN: 9781118209929

Download Understanding Computational Bayesian Statistics Book in PDF, Epub and Kindle

A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.

Bayesian Essentials with R

Bayesian Essentials with R
Author: Jean-Michel Marin,Christian P. Robert
Publsiher: Springer Science & Business Media
Total Pages: 296
Release: 2013-10-28
Genre: Computers
ISBN: 9781461486879

Download Bayesian Essentials with R Book in PDF, Epub and Kindle

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.

Advanced Research Methods for the Social and Behavioral Sciences

Advanced Research Methods for the Social and Behavioral Sciences
Author: John E. Edlund,Austin Lee Nichols
Publsiher: Cambridge University Press
Total Pages: 300
Release: 2019-03-14
Genre: Psychology
ISBN: 9781108425933

Download Advanced Research Methods for the Social and Behavioral Sciences Book in PDF, Epub and Kindle

Written by an interdisciplinary team of global experts, this book is an invaluable tool for anyone learning about research methods.

Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science
Author: Thomas M. Carsey,Jeffrey J. Harden
Publsiher: SAGE Publications
Total Pages: 304
Release: 2013-08-05
Genre: Social Science
ISBN: 9781483313474

Download Monte Carlo Simulation and Resampling Methods for Social Science Book in PDF, Epub and Kindle

Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, Monte Carlo Simulation and Resampling Methods for Social Science, by Thomas M. Carsey and Jeffrey J. Harden, examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.