Bayesian Population Analysis Using WinBUGS

Bayesian Population Analysis Using WinBUGS
Author: Marc Kéry,Michael Schaub
Publsiher: Academic Press
Total Pages: 535
Release: 2012
Genre: Science
ISBN: 9780123870209

Download Bayesian Population Analysis Using WinBUGS Book in PDF, Epub and Kindle

Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R

Bayesian Population Analysis using WinBUGS

Bayesian Population Analysis using WinBUGS
Author: Marc Kery,Michael Schaub
Publsiher: Academic Press
Total Pages: 554
Release: 2011-10-11
Genre: Science
ISBN: 9780123870216

Download Bayesian Population Analysis using WinBUGS Book in PDF, Epub and Kindle

Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R Includes complete documentation of all R and WinBUGS code required to conduct analyses and shows all the necessary steps from having the data in a text file out of Excel to interpreting and processing the output from WinBUGS in R

Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists
Author: Marc Kery
Publsiher: Academic Press
Total Pages: 320
Release: 2010-07-19
Genre: Science
ISBN: 0123786061

Download Introduction to WinBUGS for Ecologists Book in PDF, Epub and Kindle

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. Introduction to the essential theories of key models used by ecologists Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS Provides every detail of R and WinBUGS code required to conduct all analyses Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)

Integrated Population Models

Integrated Population Models
Author: Michael Schaub,Marc Kery
Publsiher: Academic Press
Total Pages: 638
Release: 2021-11-23
Genre: Nature
ISBN: 9780128209158

Download Integrated Population Models Book in PDF, Epub and Kindle

Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. Offers practical and accessible ecological applications of IPMs (integrated population models) Provides full documentation of analyzed code in the Bayesian framework Written and structured for an easy approach to the subject, especially for non-statisticians

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology
Author: Ruth King,Byron Morgan,Olivier Gimenez,Steve Brooks
Publsiher: CRC Press
Total Pages: 456
Release: 2009-10-30
Genre: Mathematics
ISBN: 1439811881

Download Bayesian Analysis for Population Ecology Book in PDF, Epub and Kindle

Novel Statistical Tools for Conserving and Managing PopulationsBy gathering information on key demographic parameters, scientists can often predict how populations will develop in the future and relate these parameters to external influences, such as global warming. Because of their ability to easily incorporate random effects, fit state-space mode

Ecological Models and Data in R

Ecological Models and Data in R
Author: Benjamin M. Bolker
Publsiher: Princeton University Press
Total Pages: 396
Release: 2008-07-21
Genre: Computers
ISBN: 9780691125220

Download Ecological Models and Data in R Book in PDF, Epub and Kindle

Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

Analysis and Management of Animal Populations

Analysis and Management of Animal Populations
Author: Byron K. Williams,James D. Nichols,Michael J. Conroy
Publsiher: Academic Press
Total Pages: 817
Release: 2002-05
Genre: Nature
ISBN: 9780127544069

Download Analysis and Management of Animal Populations Book in PDF, Epub and Kindle

Analysis and Management of Animal Populations deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. Integrates population modeling, parameter estimation and decision-theoretic approaches to management in a single, cohesive framework Provides authoritative, state-of-the-art descriptions of quantitative approaches to modeling, estimation and decision-making Emphasizes the role of mathematical modeling in the conduct of science and management Utilizes a unifying biological context, consistent mathematical notation, and numerous biological examples

Bayesian Modeling Using WinBUGS

Bayesian Modeling Using WinBUGS
Author: Ioannis Ntzoufras
Publsiher: John Wiley & Sons
Total Pages: 520
Release: 2011-09-20
Genre: Mathematics
ISBN: 9781118210352

Download Bayesian Modeling Using WinBUGS Book in PDF, Epub and Kindle

A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.

Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology
Author: J. Andrew Royle,Robert M. Dorazio
Publsiher: Elsevier
Total Pages: 464
Release: 2008-10-15
Genre: Science
ISBN: 9780080559254

Download Hierarchical Modeling and Inference in Ecology Book in PDF, Epub and Kindle

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics * Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) * Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis * Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS * Computing support in technical appendices in an online companion web site

The BUGS Book

The BUGS Book
Author: David Lunn,Chris Jackson,Nicky Best,Andrew Thomas,David Spiegelhalter
Publsiher: CRC Press
Total Pages: 399
Release: 2012-10-02
Genre: Mathematics
ISBN: 9781466586666

Download The BUGS Book Book in PDF, Epub and Kindle

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.

Bayesian Methods for Statistical Analysis

Bayesian Methods for Statistical Analysis
Author: Borek Puza
Publsiher: ANU Press
Total Pages: 679
Release: 2015-10-01
Genre: Mathematics
ISBN: 9781921934261

Download Bayesian Methods for Statistical Analysis Book in PDF, Epub and Kindle

Bayesian Methods for Statistical Analysis is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete computer code. It is suitable for self-study or a semester-long course, with three hours of lectures and one tutorial per week for 13 weeks.

Bayesian Methods for Ecology

Bayesian Methods for Ecology
Author: Michael A. McCarthy
Publsiher: Cambridge University Press
Total Pages: 135
Release: 2007-05-10
Genre: Science
ISBN: 9781139463874

Download Bayesian Methods for Ecology Book in PDF, Epub and Kindle

The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology.

Applied Hierarchical Modeling in Ecology Analysis of Distribution Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology  Analysis of Distribution  Abundance and Species Richness in R and BUGS
Author: Marc Kery,J. Andrew Royle
Publsiher: Academic Press
Total Pages: 820
Release: 2020-10-10
Genre: Nature
ISBN: 9780128097274

Download Applied Hierarchical Modeling in Ecology Analysis of Distribution Abundance and Species Richness in R and BUGS Book in PDF, Epub and Kindle

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Volume Two: Dynamic and Advanced Models provides a synthesis of the state-of-the-art in hierarchical models for plant and animal distribution, also focusing on the complex and more advanced models currently available. The book explains all procedures in the context of hierarchical models that represent a unified approach to ecological research, thus taking the reader from design, through data collection, and into analyses using a very powerful way of synthesizing data. Makes ecological modeling accessible to people who are struggling to use complex or advanced modeling programs Synthesizes current ecological models and explains how they are inter-connected Contains numerous examples throughout the book, walking the reading through scenarios with both real and simulated data Provides an ideal resource for ecologists working in R software and in BUGS software for more flexible Bayesian analyses

Network Meta Analysis for Decision Making

Network Meta Analysis for Decision Making
Author: Sofia Dias,A. E. Ades,Nicky J. Welton,Jeroen P. Jansen,Alexander J. Sutton
Publsiher: John Wiley & Sons
Total Pages: 488
Release: 2018-03-19
Genre: Mathematics
ISBN: 9781118647509

Download Network Meta Analysis for Decision Making Book in PDF, Epub and Kindle

A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question “for this pre-identified population of patients, which treatment is ‘best’?” A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.

Sampling Theory

Sampling Theory
Author: David Hankin,Michael S. Mohr,Kenneth B. Newman
Publsiher: Oxford University Press, USA
Total Pages: 368
Release: 2019-09-26
Genre: Mathematics
ISBN: 9780198815792

Download Sampling Theory Book in PDF, Epub and Kindle

Sampling theory considers how methods for selection of a subset of units from a finite population (a sample) affect the accuracy of estimates of descriptive population parameters (mean, total, proportion). Although a sound knowledge of sampling theory principles would seem essential for ecologists and natural resource scientists, the subject tends to be somewhat overlooked in contrast to other core statistical topics such as regression analysis, experimental design, and multivariate statistics. This introductory text aims to redress this imbalance by specifically targeting ecologists and resource scientists, and illustrating how sampling theory can be applied in a wide variety of resource contexts. The emphasis throughout is on design-based sampling from finite populations, but some attention is given to model-based prediction and sampling from infinite populations.