Doing Bayesian Data Analysis

Doing Bayesian Data Analysis
Author: John Kruschke
Publsiher: Academic Press
Total Pages: 776
Release: 2014-11-11
Genre: Mathematics
ISBN: 9780124059160

Download Doing Bayesian Data Analysis Book in PDF, Epub and Kindle

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Doing Bayesian Data Analysis

Doing Bayesian Data Analysis
Author: John Kruschke
Publsiher: Academic Press
Total Pages: 672
Release: 2010-11-25
Genre: Mathematics
ISBN: 0123814863

Download Doing Bayesian Data Analysis Book in PDF, Epub and Kindle

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and ‘rusty’ calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and BUGS software Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). Coverage of experiment planning R and BUGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment

Doing Bayesian Data Analysis

Doing Bayesian Data Analysis
Author: John K. Kruschke
Publsiher: Academic Press
Total Pages: 759
Release: 2014-11-03
Genre: Mathematics
ISBN: 0124058884

Download Doing Bayesian Data Analysis Book in PDF, Epub and Kindle

Provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data.

Bayesian Data Analysis Third Edition

Bayesian Data Analysis  Third Edition
Author: Andrew Gelman,John B. Carlin,Hal S. Stern,David B. Dunson,Aki Vehtari,Donald B. Rubin
Publsiher: CRC Press
Total Pages: 675
Release: 2013-11-01
Genre: Mathematics
ISBN: 9781439840955

Download Bayesian Data Analysis Third Edition Book in PDF, Epub and Kindle

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Analysis with Python

Bayesian Analysis with Python
Author: Osvaldo Martin
Publsiher: Packt Publishing Ltd
Total Pages: 282
Release: 2016-11-25
Genre: Computers
ISBN: 9781785889851

Download Bayesian Analysis with Python Book in PDF, Epub and Kindle

Unleash the power and flexibility of the Bayesian framework About This Book Simplify the Bayes process for solving complex statistical problems using Python; Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; Learn how and when to use Bayesian analysis in your applications with this guide. Who This Book Is For Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed. What You Will Learn Understand the essentials Bayesian concepts from a practical point of view Learn how to build probabilistic models using the Python library PyMC3 Acquire the skills to sanity-check your models and modify them if necessary Add structure to your models and get the advantages of hierarchical models Find out how different models can be used to answer different data analysis questions When in doubt, learn to choose between alternative models. Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression. Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework In Detail The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems. Style and approach Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

Bayesian Data Analysis Second Edition

Bayesian Data Analysis  Second Edition
Author: Andrew Gelman,John B. Carlin,Hal S. Stern,Donald B. Rubin
Publsiher: CRC Press
Total Pages: 696
Release: 2003-07-29
Genre: Mathematics
ISBN: 9781420057294

Download Bayesian Data Analysis Second Edition Book in PDF, Epub and Kindle

Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

Bayesian Statistics for Beginners

Bayesian Statistics for Beginners
Author: Therese M. Donovan,Ruth M. Mickey
Publsiher: Oxford University Press, USA
Total Pages: 419
Release: 2019
Genre: Mathematics
ISBN: 9780198841296

Download Bayesian Statistics for Beginners Book in PDF, Epub and Kindle

This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.

A Student s Guide to Bayesian Statistics

A Student   s Guide to Bayesian Statistics
Author: Ben Lambert
Publsiher: SAGE
Total Pages: 520
Release: 2018-04-20
Genre: Reference
ISBN: 9781526418265

Download A Student s Guide to Bayesian Statistics Book in PDF, Epub and Kindle

Supported by a wealth of learning features, exercises, and visual elements as well as online video tutorials and interactive simulations, this book is the first student-focused introduction to Bayesian statistics. Without sacrificing technical integrity for the sake of simplicity, the author draws upon accessible, student-friendly language to provide approachable instruction perfectly aimed at statistics and Bayesian newcomers. Through a logical structure that introduces and builds upon key concepts in a gradual way and slowly acclimatizes students to using R and Stan software, the book covers: An introduction to probability and Bayesian inference Understanding Bayes' rule Nuts and bolts of Bayesian analytic methods Computational Bayes and real-world Bayesian analysis Regression analysis and hierarchical methods This unique guide will help students develop the statistical confidence and skills to put the Bayesian formula into practice, from the basic concepts of statistical inference to complex applications of analyses.