Linear Models with R

Linear Models with R
Author: Julian J. Faraway
Publsiher: CRC Press
Total Pages: 286
Release: 2016-04-19
Genre: Mathematics
ISBN: 9781439887349

Download Linear Models with R Book in PDF, Epub and Kindle

A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

Linear Models with R Second Edition

Linear Models with R  Second Edition
Author: Julian J. Faraway
Publsiher: CRC Press
Total Pages: 286
Release: 2014-07-01
Genre: Mathematics
ISBN: 9781439887332

Download Linear Models with R Second Edition Book in PDF, Epub and Kindle

A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Linear Models with R

Linear Models with R
Author: Julian J. Faraway
Publsiher: CRC Press
Total Pages: 240
Release: 2004-08-12
Genre: Mathematics
ISBN: 9780203507278

Download Linear Models with R Book in PDF, Epub and Kindle

Books on regression and the analysis of variance abound—many are introductory, many are theoretical. While most of them do serve a purpose, the fact remains that data analysis cannot be properly learned without actually doing it, and this means using a statistical software package. There are many of these to choose from, all with their particular strengths and weaknesses. Lately, however, one such package has begun to rise above the others thanks to its free availability, its versatility as a programming language, and its interactivity. That software is R. In the first book that directly uses R to teach data analysis, Linear Models with R focuses on the practice of regression and analysis of variance. It clearly demonstrates the different methods available and, more importantly, in which situations each one applies. It covers all of the standard topics, from the basics of estimation to missing data, factorial designs, and block designs. It also discusses topics, such as model uncertainty, rarely addressed in books of this type. The presentation incorporates numerous examples that clarify both the use of each technique and the conclusions one can draw from the results. All of the data sets used in the book are available for download from http://people.bath.ac.uk/jjf23/LMR/ The author assumes that readers know the essentials of statistical inference and have a basic knowledge of data analysis, linear algebra, and calculus. The treatment reflects his view of statistical theory and his belief that qualitative statistical concepts, while somewhat more difficult to learn, are just as important because they enable us to practice statistics rather than just talk about it.

Extending the Linear Model with R

Extending the Linear Model with R
Author: Julian J. Faraway
Publsiher: Chapman & Hall/CRC Texts in Statistical Science
Total Pages: 413
Release: 2016-03-24
Genre: Analysis of variance
ISBN: 149872096X

Download Extending the Linear Model with R Book in PDF, Epub and Kindle

Start Analyzing a Wide Range of Problems Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics. New to the Second Edition Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs) Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available Updated coverage of splines and confidence bands in the chapter on nonparametric regression New material on random forests for regression and classification Revamped R code throughout, particularly the many plots using the ggplot2 package Revised and expanded exercises with solutions now included Demonstrates the Interplay of Theory and Practice This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.

Generalized Linear Models and Extensions Second Edition

Generalized Linear Models and Extensions  Second Edition
Author: James William Hardin,Joseph M. Hilbe,Joseph Hilbe
Publsiher: Stata Press
Total Pages: 387
Release: 2007-02-20
Genre: Computers
ISBN: 9781597180146

Download Generalized Linear Models and Extensions Second Edition Book in PDF, Epub and Kindle

Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.

Beyond Multiple Linear Regression

Beyond Multiple Linear Regression
Author: Paul Roback,Julie Legler
Publsiher: CRC Press
Total Pages: 436
Release: 2021-01-14
Genre: Mathematics
ISBN: 9781439885406

Download Beyond Multiple Linear Regression Book in PDF, Epub and Kindle

Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publsiher: Lulu.com
Total Pages: 314
Release: 2019
Genre: Electronic Book
ISBN: 9780244768522

Download Interpretable Machine Learning Book in PDF, Epub and Kindle

Learning Statistics with R

Learning Statistics with R
Author: Daniel Navarro
Publsiher: Lulu.com
Total Pages: 135
Release: 2022
Genre: Electronic Book
ISBN: 9781326189723

Download Learning Statistics with R Book in PDF, Epub and Kindle