Modeling and Simulation in Biomedical Engineering Applications in Cardiorespiratory Physiology

Modeling and Simulation in Biomedical Engineering  Applications in Cardiorespiratory Physiology
Author: Willem van Meurs
Publsiher: McGraw Hill Professional
Total Pages: 224
Release: 2011-08-07
Genre: Technology & Engineering
ISBN: 9780071714464

Download Modeling and Simulation in Biomedical Engineering Applications in Cardiorespiratory Physiology Book in PDF, Epub and Kindle

THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.

Computational Modeling and Simulation Examples in Bioengineering

Computational Modeling and Simulation Examples in Bioengineering
Author: Nenad Filipovic
Publsiher: John Wiley & Sons
Total Pages: 384
Release: 2021-11-30
Genre: Science
ISBN: 9781119563914

Download Computational Modeling and Simulation Examples in Bioengineering Book in PDF, Epub and Kindle

A systematic overview of the quickly developing field of bioengineering—with state-of-the-art modeling software! Computational Modeling and Simulation Examples in Bioengineering provides a comprehensive introduction to the emerging field of bioengineering. It provides the theoretical background necessary to simulating pathological conditions in the bones, muscles, cardiovascular tissue, and cancers, as well as lung and vertigo disease. The methodological approaches used for simulations include the finite element, dissipative particle dynamics, and lattice Boltzman. The text includes access to a state-of-the-art software package for simulating the theoretical problems. In this way, the book enhances the reader's learning capabilities in the field of biomedical engineering. The aim of this book is to provide concrete examples of applied modeling in biomedical engineering. Examples in a wide range of areas equip the reader with a foundation of knowledge regarding which problems can be modeled with which numerical methods. With more practical examples and more online software support than any competing text, this book organizes the field of computational bioengineering into an accessible and thorough introduction. Computational Modeling and Simulation Examples in Bioengineering: Includes a state-of-the-art software package enabling readers to engage in hands-on modeling of the examples in the book Provides a background on continuum and discrete modeling, along with equations and derivations for three key numerical methods Considers examples in the modeling of bones, skeletal muscles, cartilage, tissue engineering, blood flow, plaque, and more Explores stent deployment modeling as well as stent design and optimization techniques Generates different examples of fracture fixation with respect to the advantages in medical practice applications Computational Modeling and Simulation Examples in Bioengineering is an excellent textbook for students of bioengineering, as well as a support for basic and clinical research. Medical doctors and other clinical professionals will also benefit from this resource and guide to the latest modeling techniques.

Multiphysics Modeling with Application to Biomedical Engineering

Multiphysics Modeling with Application to Biomedical Engineering
Author: Z. Yang
Publsiher: CRC Press
Total Pages: 160
Release: 2020-07-23
Genre: Mathematics
ISBN: 9781000088878

Download Multiphysics Modeling with Application to Biomedical Engineering Book in PDF, Epub and Kindle

The aim of this book is to introduce the simulation of various physical fields and their applications for biomedical engineering, which will provide a base for researchers in the biomedical field to conduct further investigation. The entire book is classified into three levels. It starts with the first level, which presents the single physical fields including structural analysis, fluid simulation, thermal analysis, and acoustic modeling. Then, the second level consists of various couplings between two physical fields covering structural thermal coupling, porous media, fluid structural interaction (FSI), and acoustic FSI. The third level focuses on multi-coupling that coupling with more than two physical fields in the model. Each part in all levels is organized as the physical feature, finite element implementation, modeling procedure in ANSYS, and the specific applications for biomedical engineering like the FSI study of Abdominal Aortic Aneurysm (AAA), acoustic wave transmission in the ear, and heat generation of the breast tumor. The book should help for the researchers and graduate students conduct numerical simulation of various biomedical coupling problems. It should also provide all readers with a better understanding of various couplings.

Computational Modeling in Biomedical Engineering and Medical Physics

Computational Modeling in Biomedical Engineering and Medical Physics
Author: Alexandru Morega,Mihaela Morega,Alin Dobre
Publsiher: Academic Press
Total Pages: 314
Release: 2020-09-15
Genre: Science
ISBN: 9780128178980

Download Computational Modeling in Biomedical Engineering and Medical Physics Book in PDF, Epub and Kindle

Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Computational Bioengineering and Bioinformatics

Computational Bioengineering and Bioinformatics
Author: Nenad Filipovic
Publsiher: Springer Nature
Total Pages: 169
Release: 2020-03-11
Genre: Technology & Engineering
ISBN: 9783030436582

Download Computational Bioengineering and Bioinformatics Book in PDF, Epub and Kindle

This book explores the latest and most relevant topics in the field of computational bioengineering and bioinformatics, with a particular focus on patient-specific, disease-progression modeling. It covers computational methods for cardiovascular disease prediction, with an emphasis on biomechanics, biomedical decision support systems, data mining, personalized diagnostics, bio-signal processing, protein structure prediction, biomedical image processing, analysis and visualization, and high-performance computing. It also discusses state-of-the-art tools for disease characterization, and recent advances in areas such as biomechanics, cardiovascular engineering, patient-specific modeling, population-based modeling, multiscale modeling, image processing, data mining, biomedical decision-support systems, signal processing, biomaterials and dental biomechanics, tissue and cell engineering, computational chemistry and high-performance computing. As such, it is a valuable resource for researchers, medical and bioengineering students, and medical device and software experts

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences
Author: Riccardo Sacco,Giovanna Guidoboni,Aurelio Giancarlo Mauri
Publsiher: Academic Press
Total Pages: 854
Release: 2019-07-18
Genre: Technology & Engineering
ISBN: 9780128125199

Download A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences Book in PDF, Epub and Kindle

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences provides a systematic methodology to the formulation of problems in biomedical engineering and the life sciences through the adoption of mathematical models based on physical principles, such as the conservation of mass, electric charge, momentum, and energy. It then teaches how to translate the mathematical formulation into a numerical algorithm that is implementable on a computer. The book employs computational models as synthesized tools for the investigation, quantification, verification, and comparison of different conjectures or scenarios of the behavior of a given compartment of the human body under physiological and pathological conditions. Presents theoretical (modeling), biological (experimental), and computational (simulation) perspectives Features examples, exercises, and MATLAB codes for further reader involvement Covers basic and advanced functional and computational techniques throughout the book

Introduction to Modeling in Physiology and Medicine

Introduction to Modeling in Physiology and Medicine
Author: Claudio Cobelli,Ewart Carson
Publsiher: Elsevier
Total Pages: 328
Release: 2008-02-06
Genre: Technology & Engineering
ISBN: 0080559980

Download Introduction to Modeling in Physiology and Medicine Book in PDF, Epub and Kindle

This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises

Signals and Systems in Biomedical Engineering

Signals and Systems in Biomedical Engineering
Author: Suresh R. Devasahayam
Publsiher: Springer Science & Business Media
Total Pages: 333
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9781461542995

Download Signals and Systems in Biomedical Engineering Book in PDF, Epub and Kindle

In the past few years Biomedical Engineering has received a great deal of attention as one of the emerging technologies in the last decade and for years to come, as witnessed by the many books, conferences, and their proceedings. Media attention, due to the applications-oriented advances in Biomedical Engineering, has also increased. Much of the excitement comes from the fact that technology is rapidly changing and new technological adventures become available and feasible every day. For many years the physical sciences contributed to medicine in the form of expertise in radiology and slow but steady contributions to other more diverse fields, such as computers in surgery and diagnosis, neurology, cardiology, vision and visual prosthesis, audition and hearing aids, artificial limbs, biomechanics, and biomaterials. The list goes on. It is therefore hard for a person unfamiliar with a subject to separate the substance from the hype. Many of the applications of Biomedical Engineering are rather complex and difficult to understand even by the not so novice in the field. Much of the hardware and software tools available are either too simplistic to be useful or too complicated to be understood and applied. In addition, the lack of a common language between engineers and computer scientists and their counterparts in the medical profession, sometimes becomes a barrier to progress.

Biosimulation

Biosimulation
Author: Daniel A. Beard
Publsiher: Cambridge University Press
Total Pages: 307
Release: 2012-04-12
Genre: Science
ISBN: 9780521768238

Download Biosimulation Book in PDF, Epub and Kindle

A hands-on guide to devising, designing and analyzing simulations of biophysical processes for applications in biological and biomedical sciences. Practical examples are given throughout, representing real-world case studies of key application areas, and all data and complete codes for simulation and data analysis are provided online.

Finite Element Analysis for Biomedical Engineering Applications

Finite Element Analysis for Biomedical Engineering Applications
Author: Z. C. Yang
Publsiher: CRC Press
Total Pages: 302
Release: 2019-03-14
Genre: Mathematics
ISBN: 9780429592157

Download Finite Element Analysis for Biomedical Engineering Applications Book in PDF, Epub and Kindle

Finite element analysis has been widely applied to study biomedical problems. This book aims to simulate some common medical problems using finite element advanced technologies, which establish a base for medical researchers to conduct further investigations. This book consists of four main parts: (1) bone, (2) soft tissues, (3) joints, and (4) implants. Each part starts with the structure and function of the biology and then follows the corresponding finite element advanced features, such as anisotropic nonlinear material, multidimensional interpolation, XFEM, fiber enhancement, UserHyper, porous media, wear, and crack growth fatigue analysis. The final section presents some specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent. All modeling files are attached in the appendixes of the book. This book will be helpful to graduate students and researchers in the biomedical field who engage in simulations of biomedical problems. The book also provides all readers with a better understanding of current advanced finite element technologies. Details finite element modeling of bone, soft tissues, joints, and implants Presents advanced finite element technologies, such as fiber enhancement, porous media, wear, and crack growth fatigue analysis Discusses specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent Explains principles for modeling biology Provides various descriptive modeling files

Innovations in Modeling and Simulation to Advance Translational Science

Innovations in Modeling and Simulation to Advance Translational Science
Author: Melissa Knothe Tate,Leonardo Angelone,Christopher Basciano,Markus Reiterer
Publsiher: Frontiers Media SA
Total Pages: 135
Release: 2020-12-15
Genre: Science
ISBN: 9782889662258

Download Innovations in Modeling and Simulation to Advance Translational Science Book in PDF, Epub and Kindle

Modelling Organs Tissues Cells and Devices

Modelling Organs  Tissues  Cells and Devices
Author: Socrates Dokos
Publsiher: Springer
Total Pages: 502
Release: 2017-03-08
Genre: Technology & Engineering
ISBN: 9783642548017

Download Modelling Organs Tissues Cells and Devices Book in PDF, Epub and Kindle

This book presents a theoretical and practical overview of computational modeling in bioengineering, focusing on a range of applications including electrical stimulation of neural and cardiac tissue, implantable drug delivery, cancer therapy, biomechanics, cardiovascular dynamics, as well as fluid-structure interaction for modelling of organs, tissues, cells and devices. It covers the basic principles of modeling and simulation with ordinary and partial differential equations using MATLAB and COMSOL Multiphysics numerical software. The target audience primarily comprises postgraduate students and researchers, but the book may also be beneficial for practitioners in the medical device industry.

Introduction to Dynamic Modeling of Neuro Sensory Systems

Introduction to Dynamic Modeling of Neuro Sensory Systems
Author: Robert B. Northrop
Publsiher: CRC Press
Total Pages: 488
Release: 2000-11-27
Genre: Medical
ISBN: 9781420041729

Download Introduction to Dynamic Modeling of Neuro Sensory Systems Book in PDF, Epub and Kindle

Although neural modeling has a long history, most of the texts available on the subject are quite limited in scope, dealing primarily with the simulation of large-scale biological neural networks applicable to describing brain function. Introduction to Dynamic Modeling of Neuro-Sensory Systems presents the mathematical tools and methods that can describe and predict the dynamic behavior of single neurons, small assemblies of neurons devoted to a single tasks, as well as larger sensory arrays and their underlying neuropile. Focusing on small and medium-sized biological neural networks, the author pays particular attention to visual feature extraction, especially the compound eye visual system and the vertebrate retina. For computational efficiency, the treatment avoids molecular details of neuron function and uses the locus approach for medium-scale modeling of arrays. Rather than requiring readers to learn a dedicated simulation program, the author uses the general, nonlinear ordinary differential equation solver Simnonä for all examples and exercises. There is both art and science in setting up a computational model that can be validated from existing neurophysiological data. With clear prose, more than 200 figures and photographs, and unique focus, Introduction to Dynamic Modeling of Neuro-Sensory Systems develops the science, nurtures the art, and builds the foundation for more advanced work in neuroscience and the rapidly emerging field of neuroengineering.

Modeling and Simulation

Modeling and Simulation
Author: Guillaume Dubois
Publsiher: CRC Press
Total Pages: 148
Release: 2018-03-22
Genre: Technology & Engineering
ISBN: 9781351241113

Download Modeling and Simulation Book in PDF, Epub and Kindle

Modeling, in the past 60 years, has been constantly evolving and has revolutionized the industrial sector. Its continuous development will still have profound impact in the upcoming future. For big or small companies, modeling is a tool which brings technical improvement and profitability. What is modeling? What are the benefits and limits? What are the best practices, technical and non-technical, to apply? The objective of this book is to bring answers to these questions in a synthetic and transversal manner, so that engineers, managers and directors can see future challenges not as a threat, but as an opportunity. Foreword by Martin Lundstedt, President and CEO of Volvo Group

What Every Engineer Should Know About Modeling and Simulation

What Every Engineer Should Know About Modeling and Simulation
Author: Raymond J. Madachy,Daniel Houston
Publsiher: CRC Press
Total Pages: 152
Release: 2017-09-01
Genre: Computers
ISBN: 9781351648646

Download What Every Engineer Should Know About Modeling and Simulation Book in PDF, Epub and Kindle

This practical book presents fundamental concepts and issues in computer modeling and simulation (M&S) in a simple and practical way for engineers, scientists, and managers who wish to apply simulation successfully to their real-world problems. It offers a concise approach to the coverage of generic (tool-independent) M&S concepts and enables engineering practitioners to easily learn, evaluate, and apply various available simulation concepts. Worked out examples are included to illustrate the concepts and an example modeling application is continued throughout the chapters to demonstrate the techniques. The book discusses modeling purposes, scoping a model, levels of modeling abstraction, the benefits and cost of including randomness, types of simulation, and statistical techniques. It also includes a chapter on modeling and simulation projects and how to conduct them for customer and engineer benefit and covers the stages of a modeling and simulation study, including process and system investigation, data collection, modeling scoping and production, model verification and validation, experimentation, and analysis of results.