Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors
Author: Pascal Yvon
Publsiher: Woodhead Publishing
Total Pages: 684
Release: 2016-08-27
Genre: Technology & Engineering
ISBN: 9780081009123

Download Structural Materials for Generation IV Nuclear Reactors Book in PDF, Epub and Kindle

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates Written by an expert in that particular area

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications
Author: Robert Odette,Steven Zinkle
Publsiher: Newnes
Total Pages: 673
Release: 2019-08-15
Genre: Technology & Engineering
ISBN: 9780123973498

Download Structural Alloys for Nuclear Energy Applications Book in PDF, Epub and Kindle

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors
Author: Igor Pioro
Publsiher: Woodhead Publishing
Total Pages: 940
Release: 2016-06-09
Genre: Technology & Engineering
ISBN: 9780081001622

Download Handbook of Generation IV Nuclear Reactors Book in PDF, Epub and Kindle

Handbook of Generation IV Nuclear Reactors presents information on the current fleet of Nuclear Power Plants (NPPs) with water-cooled reactors (Generation III and III+) (96% of 430 power reactors in the world) that have relatively low thermal efficiencies (within the range of 32 36%) compared to those of modern advanced thermal power plants (combined cycle gas-fired power plants – up to 62% and supercritical pressure coal-fired power plants – up to 55%). Moreover, thermal efficiency of the current fleet of NPPs with water-cooled reactors cannot be increased significantly without completely different innovative designs, which are Generation IV reactors. Nuclear power is vital for generating electrical energy without carbon emissions. Complete with the latest research, development, and design, and written by an international team of experts, this handbook is completely dedicated to Generation IV reactors. Presents the first comprehensive handbook dedicated entirely to generation IV nuclear reactors Reviews the latest trends and developments Complete with the latest research, development, and design information in generation IV nuclear reactors Written by an international team of experts in the field

Updated Generation IV Reactors Integrated Materials Technology Program Plan Revision 2

Updated Generation IV Reactors Integrated Materials Technology Program Plan  Revision 2
Author: Anonim
Publsiher: Unknown
Total Pages: 135
Release: 2005
Genre: Electronic Book
ISBN: OCLC:1065654605

Download Updated Generation IV Reactors Integrated Materials Technology Program Plan Revision 2 Book in PDF, Epub and Kindle

The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R & D) necessary to support next-generation nuclear energy systems. Such R & D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R & D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

Materials Issues for Generation IV Systems

Materials Issues for Generation IV Systems
Author: Véronique Ghetta,Dominique Gorse,Dominique Mazière,Vassilis Pontikis
Publsiher: Springer Science & Business Media
Total Pages: 586
Release: 2008-04-23
Genre: Technology & Engineering
ISBN: 9781402084225

Download Materials Issues for Generation IV Systems Book in PDF, Epub and Kindle

Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the projected systems had to extend over the periods necessary to achieve low costs (at least 60 years). This book collects lectures and seminars presented at the homonymous NATO ASI held in autumn 2007 at the Institut d’Etudes Scientifiques in Cargèse, France. The adopted approach aims at improving and coordinating basic knowledge in materials science and engineering with specific areas of condensed matter physics, the physics of particle/matter interaction and of radiation damage. It is our belief that this methodology is crucially conditioning the development and the industrial production of new structural materials capable of coping with the requirements of these future reactors.

Ceramic Science and Engineering

Ceramic Science and Engineering
Author: Kamakhya Prakash Misra,R.D.K. Misra
Publsiher: Elsevier
Total Pages: 616
Release: 2022-05-07
Genre: Technology & Engineering
ISBN: 9780323886031

Download Ceramic Science and Engineering Book in PDF, Epub and Kindle

Ceramic Science and Engineering: Basics to Recent Advancements covers the fundamentals, classification and applications surrounding ceramic engineering. In addition, the book contains an extensive review of the current published literature on established ceramic materials. Other sections present an extensive review of up-to-date research on new innovative ceramic materials and reviews recently published articles, case studies and the latest research outputs. The book will be an essential reference resource for materials scientists, physicists, chemists and engineers, postgraduate students, early career researchers, and industrial researchers working in R&D in the development of ceramic materials. Ceramic engineering deals with the science and technology of creating objects from inorganic and non-metallic materials. It combines the principles of chemistry, physics and engineering. Fiber-optic devices, microprocessors and solar panels are just a few examples of ceramic engineering being applied in everyday life. Advanced ceramics such as alumina, aluminum nitride, zirconia, ZnO, silicon carbide, silicon nitride and titania-based materials, each of which have their own specific characteristics and offer an economic and high-performance alternative to more conventional materials such as glass, metals and plastics are also discussed. Covers environmental barrier ceramic coatings, advanced ceramic conductive fuel cells, processing and machining technology in ceramic and composite materials, photoluminescent ceramic materials, perovskite ceramics and bioinspired ceramic materials Reviews both conventional, established ceramics and new, innovative advanced ceramics Contains an extensive review of the current published literature on established ceramic materials

Generation IV Reactors Integrated Materials Technology Program Plan

Generation IV Reactors Integrated Materials Technology Program Plan
Author: Anonim
Publsiher: Unknown
Total Pages: 135
Release: 2008
Genre: Electronic Book
ISBN: OCLC:727358617

Download Generation IV Reactors Integrated Materials Technology Program Plan Book in PDF, Epub and Kindle

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R & D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R & D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R & D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

Contemporary Problems of Architecture and Construction

Contemporary Problems of Architecture and Construction
Author: Evgeny Rybnov,Pavel Akimov,Merab Khalvashi,Eghiazar Vardanyan
Publsiher: CRC Press
Total Pages: 468
Release: 2021-03-09
Genre: Technology & Engineering
ISBN: 9781000393729

Download Contemporary Problems of Architecture and Construction Book in PDF, Epub and Kindle

Contemporary Problems of Architecture and Construction 2020 includes contributions on various complex issues and aspects of engineering and construction of buildings and structures, protection, reconstruction and restoration of architecture, as well as intellectualization of energy and safety systems functioning urban development. The contributions were presented at the eponymous conference (ICCPAC 2020, St Petersburg, Russia, November 25-26, 2020), and cover a wide range of topics: Urban development: problems of urban construction and architecture Engineering, construction and operation of buildings and structures Implementation of building information modeling (BIM) and geo-information systems (GIS) technologies in the construction industry Energy efficiency of buildings and maintenance systems Engineering technologies of sustainable nature management and environmental protection Intellectualization and algorithmization of large cities road safety systems functioning Economics and management in construction and public utility services. Contemporary Problems of Architecture and Construction 2020 will be of interest to academics and professionals involved in the urban development, engineering technologies, architecture and construction, economics and management in construction industry.

Nuclear Energy Research Initiative Program NERI Quarterly Progress Report New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors

Nuclear Energy Research Initiative Program  NERI  Quarterly Progress Report   New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors
Author: Anonim
Publsiher: Unknown
Total Pages: 28
Release: 2003
Genre: Electronic Book
ISBN: OCLC:68217860

Download Nuclear Energy Research Initiative Program NERI Quarterly Progress Report New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors Book in PDF, Epub and Kindle

The objectives of this research project are to significantly extend the theoretical foundation and the modeling of radiation-induced microstructural changes in structural materials used in Generation IV nuclear reactors, and to derive from these microstructure models the constitutive laws for void swelling, irradiation creep and stress-induced swelling, as well as changes in mechanical properties. The need for the proposed research is based on three major developments and advances over the past two decades. First, new experimental discoveries have been made on void swelling and irradiation creep which invalidate previous theoretical models and empirical constitutive laws for swelling and irradiation creep. Second, recent advances in computational methods and power make it now possible to model the complex processes of microstructure evolution over long-term neutron exposures. Third, it is now required that radiation-induced changes in structural materials over extended lifetimes be predicted and incorporated in the design of Generation IV reactors. Our approach to modeling and data analysis is a dual one in accord with both the objectives to simulate the evolution of the microstructure and to develop design equations for macroscopic properties. Validation of the models through data analysis is therefore carried out at both the microscopic and the macroscopic levels. For the microstructure models, we utilize the transmission electron microscopy results from steels irradiated in reactors and from model materials irradiated by neutrons as well as ion bombardments. The macroscopic constitutive laws will be tested and validated by analyzing density data, irradiation creep data, diameter changes of fuel elements, and post-irradiation tensile data. Validation of both microstructure models and macroscopic constitutive laws is a more stringent test of the internal consistency of the underlying science for radiation effects in structural materials for nuclear reactors.

Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants

Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants
Author: Bahman Zohuri,Patrick McDaniel
Publsiher: Springer
Total Pages: 395
Release: 2017-12-07
Genre: Technology & Engineering
ISBN: 9783319705514

Download Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants Book in PDF, Epub and Kindle

The second edition of this book includes the most up-to-date details on the advantages of Nuclear Air-Brayton Power Plant Cycles for advanced reactors. It demonstrates significant advantages for typical sodium cooled reactors and describes how these advantages will grow as higher temperature systems (molten salts) are developed. It also describes how a Nuclear Air-Brayton system can be integrated with significant renewable (solar and wind) energy systems to build a low carbon grid. Starting with basic principles of thermodynamics as applied to power plant systems, it moves on to describe several types of Nuclear Air-Brayton systems that can be employed to meet different requirements. It provides estimates of component sizes and performance criteria for Small Modular Reactors (SMR). This book has been revised to include updated tables and significant new results that have become available for intercooled systems in the time since the previous edition published. In this edition also, the steam tables have been updated and Chapters 9 and 10 have been rewritten to keep up with the most up-to- date technology and current research.

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials
Author: Anonim
Publsiher: Elsevier
Total Pages: 4868
Release: 2020-07-22
Genre: Science
ISBN: 9780081028667

Download Comprehensive Nuclear Materials Book in PDF, Epub and Kindle

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials 2e provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Nuclear Fusion Programme Annual Report of the Association Karlsruhe Institute of Technology EURATOM January 2012 December 2012

Nuclear Fusion Programme  Annual Report of the Association Karlsruhe Institute of Technology EURATOM   January 2012   December 2012
Author: Pleli, Ingrid
Publsiher: KIT Scientific Publishing
Total Pages: 533
Release: 2015-01-19
Genre: Electronic Book
ISBN: 9182736450XXX

Download Nuclear Fusion Programme Annual Report of the Association Karlsruhe Institute of Technology EURATOM January 2012 December 2012 Book in PDF, Epub and Kindle

Foreign Trip Report MATGEN IV Sep 24 Oct 26 2007

Foreign Trip Report MATGEN IV Sep 24  Oct 26  2007
Author: Anonim
Publsiher: Unknown
Total Pages: 11
Release: 2007
Genre: Electronic Book
ISBN: OCLC:727350887

Download Foreign Trip Report MATGEN IV Sep 24 Oct 26 2007 Book in PDF, Epub and Kindle

Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD project on Critical Issues on Materials for Gen-IV Reactors).

Nanotechnology for Energy Sustainability

Nanotechnology for Energy Sustainability
Author: Baldev Raj,Marcel Van de Voorde,Yashwant Mahajan
Publsiher: John Wiley & Sons
Total Pages: 1316
Release: 2017-01-30
Genre: Technology & Engineering
ISBN: 9783527696147

Download Nanotechnology for Energy Sustainability Book in PDF, Epub and Kindle

In three handy volumes, this ready reference provides a detailed overview of nanotechnology as it is applied to energy sustainability. Clearly structured, following an introduction, the first part of the book is dedicated to energy production, renewable energy, energy storage, energy distribution, and energy conversion and harvesting. The second part then goes on to discuss nano-enabled materials, energy conservation and management, technological and intellectual property-related issues and markets and environmental remediation. The text concludes with a look at and recommendations for future technology advances. An essential handbook for all experts in the field - from academic researchers and engineers to developers in industry.

Engineering Asset Management and Infrastructure Sustainability

Engineering Asset Management and Infrastructure Sustainability
Author: Joseph Mathew,Lin Ma,Andy Tan,Margot Weijnen,Jay Lee
Publsiher: Springer Science & Business Media
Total Pages: 1160
Release: 2012-05-11
Genre: Technology & Engineering
ISBN: 9780857294937

Download Engineering Asset Management and Infrastructure Sustainability Book in PDF, Epub and Kindle

Engineering Asset Management 2010 represents state-of-the art trends and developments in the emerging field of engineering asset management as presented at the Fifth World Congress on Engineering Asset Management (WCEAM). The proceedings of the WCEAM 2010 is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering topics such as: Asset condition monitoring and intelligent maintenance Asset data warehousing, data mining and fusion Asset performance and level-of-service models Design and life-cycle integrity of physical assets Education and training in asset management Engineering standards in asset management Fault diagnosis and prognostics Financial analysis methods for physical assets Human dimensions in integrated asset management Information quality management Information systems and knowledge management Intelligent sensors and devices Maintenance strategies in asset management Optimisation decisions in asset management Risk management in asset management Strategic asset management Sustainability in asset management