Theory and Methods of Statistics

Theory and Methods of Statistics
Author: P.K. Bhattacharya,Prabir Burman
Publsiher: Academic Press
Total Pages: 544
Release: 2016-06-23
Genre: Mathematics
ISBN: 9780128041239

Download Theory and Methods of Statistics Book in PDF, Epub and Kindle

Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource Serves as an excellent text for select master’s and PhD programs, as well as a professional reference Integrates numerous examples to illustrate advanced concepts Includes many probability inequalities useful for investigating convergence of statistical procedures

Robust Statistics

Robust Statistics
Author: Ricardo A. Maronna,R. Douglas Martin,Victor J. Yohai,Matías Salibián-Barrera
Publsiher: Wiley
Total Pages: 464
Release: 2018-12-03
Genre: Mathematics
ISBN: 9781119214687

Download Robust Statistics Book in PDF, Epub and Kindle

A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Essential Statistical Inference

Essential Statistical Inference
Author: Dennis D. Boos,L A Stefanski
Publsiher: Springer Science & Business Media
Total Pages: 568
Release: 2013-02-06
Genre: Mathematics
ISBN: 9781461448181

Download Essential Statistical Inference Book in PDF, Epub and Kindle

​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

Statistical Methods for Organizational Research

Statistical Methods for Organizational Research
Author: Chris Dewberry
Publsiher: Routledge
Total Pages: 364
Release: 2004-08-26
Genre: Business & Economics
ISBN: 9781134314348

Download Statistical Methods for Organizational Research Book in PDF, Epub and Kindle

This clearly written textbook clarifies the concepts underpinning descriptive and inferential statistics in organizational research. Acting as much more than a theoretical reference tool, step-by-step it guides readers through the various key stages of successful data analysis. Covering everything from introductory descriptive statistics to advanced inferential techniques such as ANOVA, multiple and logistic regression and factor analysis, this is one of the most comprehensive textbooks available. Using examples directly relevant to organizational research it includes practical advice on such topics as the size of samples required in research studies, using and interpreting SPSS, and writing up results. In helping readers to develop a sound understanding of statistical methods, rather than focusing on complex formulas and computations, this outstanding textbook is as appropriate for those who wish to refresh their knowledge as those new to the subject area.

Data Methods and Theory in the Organizational Sciences

Data  Methods  and Theory in the Organizational Sciences
Author: Kevin R. Murphy
Publsiher: Routledge
Total Pages: 384
Release: 2022
Genre: Business & Economics
ISBN: 100301500X

Download Data Methods and Theory in the Organizational Sciences Book in PDF, Epub and Kindle

Data, Methods and Theory in the Organizational Sciences explores the long-term evolution and changing relationships between data, methods, and theory in the organizational sciences. In the last 50 years, theory has come to dominate research and scholarship in these fields, yet the emergence of big data, as well as the increasing use of archival data sets and meta-analytic methods to test empirical hypotheses, has upset this order. This volume examines the evolving relationship between data, methods, and theory and suggests new ways of thinking about the role of each in the development and presentation of research in organizations. This volume utilizes the latest thinking from experts in a wide range of fields on the topics of data, methods, and theory and uses this knowledge to explore the ways in which behavior in organizations has been studied. This volume also argues that the current focus on theory is both unhealthy for the field and unsustainable, and it provides more successful ways theory can be used to support and structure research, and demonstrates the most effective techniques for analyzing and making sense of data. This is an essential resource for researchers, professionals, and educators who are looking to rethink their current approaches to research, and who are interested in creating more useful and more interpretable research in the organizational sciences.

Asymptotic Methods in Statistical Decision Theory

Asymptotic Methods in Statistical Decision Theory
Author: Lucien Le Cam
Publsiher: Springer Science & Business Media
Total Pages: 742
Release: 2012-12-06
Genre: Mathematics
ISBN: 9781461249467

Download Asymptotic Methods in Statistical Decision Theory Book in PDF, Epub and Kindle

This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.

Time Series Theory and Methods

Time Series  Theory and Methods
Author: Peter J. Brockwell,Richard A. Davis
Publsiher: Springer Science & Business Media
Total Pages: 580
Release: 2009-05-13
Genre: Mathematics
ISBN: 9781441903204

Download Time Series Theory and Methods Book in PDF, Epub and Kindle

This edition contains a large number of additions and corrections scattered throughout the text, including the incorporation of a new chapter on state-space models. The companion diskette for the IBM PC has expanded into the software package ITSM: An Interactive Time Series Modelling Package for the PC, which includes a manual and can be ordered from Springer-Verlag. * We are indebted to many readers who have used the book and programs and made suggestions for improvements. Unfortunately there is not enough space to acknowledge all who have contributed in this way; however, special mention must be made of our prize-winning fault-finders, Sid Resnick and F. Pukelsheim. Special mention should also be made of Anthony Brockwell, whose advice and support on computing matters was invaluable in the preparation of the new diskettes. We have been fortunate to work on the new edition in the excellent environments provided by the University of Melbourne and Colorado State University. We thank Duane Boes particularly for his support and encouragement throughout, and the Australian Research Council and National Science Foundation for their support of research related to the new material. We are also indebted to Springer-Verlag for their constant support and assistance in preparing the second edition. Fort Collins, Colorado P. J. BROCKWELL November, 1990 R. A. DAVIS * /TSM: An Interactive Time Series Modelling Package for the PC by P. J. Brockwell and R. A. Davis. ISBN: 0-387-97482-2; 1991.

Statistics

Statistics
Author: Donald A. Berry,Bernard William Lindgren
Publsiher: Duxbury Resource Center
Total Pages: 702
Release: 1996
Genre: Mathematics
ISBN: STANFORD:36105018400304

Download Statistics Book in PDF, Epub and Kindle

1. Probability 2. Discrete Random Variables 3. Averages 4. Bernoulli and Related Variables 5. Continuous Random Variables 6. Families of Continuous Distributions 7. Organizing and Describing Data 8. Samples, Statistics, and Sampling Distributions 9. Estimation 10. Significance Testing 11. Tests as Decision Rules 12. Comparing Two Populations 13. Goodness of Fit 14. Analysis of Variance 15. Regression